Large-scale neural models and dynamic causal modelling.
نویسندگان
چکیده
Dynamic causal modelling (DCM) is a method for estimating and making inferences about the coupling among small numbers of brain areas, and the influence of experimental manipulations on that coupling [Friston, K.J., Harrison, L., Penny, W., 2003 Dynamic causal modelling. Neuroimage 19, 1273-1302]. Large-scale neural modelling aims to construct neurobiologically grounded computational models with emergent behaviours that inform our understanding of neuronal systems. One such model has been used to simulate region-specific BOLD time-series [Horwitz, B., Friston, K.J., Taylor, J.G., 2000. Neural modeling and functional brain imaging: an overview. Neural Netw. 13, 829-846]. DCM was used to make inferences about effective connectivity using data generated by a model implementing a visual delayed match-to-sample task [Tagamets, M.A., Horwitz, B., 1998. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb. Cortex 8, 310-320]. The aim was to explore the validity of inferences made using DCM about the connectivity structure and task-dependent modulatory effects, in a system with a known connectivity structure. We also examined the effects of misspecifying regions of interest. Models with hierarchical connectivity and reciprocal connections were examined using DCM and Bayesian Model Comparison [Penny, W.D., Stephan, K.E., Mechelli, A., Friston, K.J., 2004. Comparing dynamic causal models. Neuroimage 22, 1157-1172]. This approach revealed strong evidence for those models with correctly specified anatomical connectivity. Furthermore, Bayesian model comparison favoured those models when bilinear effects corresponded to their implementation in the neural model. These findings generalised to an extended model with two additional areas and reentrant circuits. The conditional uncertainty of coupling parameter estimates increased in proportion to the number of incorrectly specified regions. These results highlight the role of neural models in establishing the validity of estimation and inference schemes. Specifically, Bayesian model comparison confirms the validity of DCM in relation to a well-characterised and comprehensive neuronal model.
منابع مشابه
ESTIMATING THE VULNERABILITY OF THE CONCRETE MOMENT RESISTING FRAME STRUCTURES USING ARTIFICIAL NEURAL NETWORKS
Heavy economic losses and human casualties caused by destructive earthquakes around the world clearly show the need for a systematic approach for large scale damage detection of various types of existing structures. That could provide the proper means for the decision makers for any rehabilitation plans. The aim of this study is to present an innovative method for investigating the seismic vuln...
متن کاملBiophysical models of fMRI responses.
Functional magnetic resonance imaging (fMRI) is used to investigate where the neural implementation of specific cognitive processes occurs. The standard approach uses linear convolution models that relate experimentally designed inputs, through a haemodynamic response function, to observed blood oxygen level dependent (BOLD) signals. Such models are, however, blind to the causal mechanisms that...
متن کاملStochastic dynamic causal modelling of fMRI data: Should we care about neural noise?
Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctuations in neuronal activity and their interaction with task-specific proce...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملCausal Regularization
In application domains such as healthcare, we want accurate predictive models that are also causally interpretable. In pursuit of such models, we propose a causal regularizer to steer predictive models towards causally-interpretable solutions and theoretically study its properties. In a large-scale analysis of Electronic Health Records (EHR), our causally-regularized model outperforms its L1-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2006